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Commentary

The concentration of atmospheric carbon 
dioxide has increased by 22% since 1960 to 
a current background level of approximately 
385 µmol/mol (Intergovernmental Panel on 
Climate Change 2007). Recent evidence that 
the growth rate of CO2 emissions may have 
jumped from 1.3% to 3.3% per year from the 
1990s to 2000–2006, potentially as a result 
of declining global sinks and increased eco-
nomic activity, emphasizes the critical need 
to characterize the probable impacts of this 
impending climate forcing on human systems 
(Canadell et al. 2007).

Because CO2 absorbs heat leaving the 
earth’s atmosphere, there is widespread agree-
ment that increasing CO2 is projected to result 
in increasing surface temperatures and wider 
swings in weather. The extent to which tem-
peratures increase and weather patterns shift 
and the potential consequences for human 
health, from heat-related deaths to the spread 
of vector-borne diseases, have been addressed 
in the scientific literature (Epstein 2005; 
Gamble et al. 2008; Patz and Kovats 2002). 
Here we describe additional dimensions of 
global environmental change: the response of 
terrestrial plants to the buildup of atmospheric 
CO2, potential climatic forcing with respect to 
temperature on plant growth, and the implica-
tions for human health and nutrition.

Plant biology is directly affected by ris-
ing CO2 because CO2 is the sole supplier of 
carbon for photosynthesis. Because approxi-
mately 95% of all plant species are deficient 
in the amount of CO2 needed to operate at 
maximum efficiency, recent increases in CO2 
have already stimulated plant growth, and 

projected future increases will continue to 
do so (e.g., Poorter 1993), with the degree of 
stimulation being at least potentially tempera-
ture dependent (Long 1991). Critics of the 
potential of CO2 as a greenhouse-warming 
gas have stressed that CO2-induced stimu-
lation of plant growth will result in a lush 
plant environment (Idso and Idso 1994); 
indeed, much of the literature has focused 
on agronomically important species (see, 
e.g., Ainsworth et al. 2002; Kimball 1993). 
However, CO2 does not discriminate between 
desirable (e.g., wheat, rice, and forest trees) 
and undesirable (e.g., ragweed, poison ivy) 
plant species with respect to human systems.

Objectives
What aspects of plant biology currently affect 
public health? How have, or will, changing 
levels of CO2 and increasing surface tempera-
ture change those aspects? For many health 
care professionals, the role of plant biology 
has not been fully elucidated, yet it has a 
number of self-evident impacts, such as nutri-
tion, and perhaps more subtle interactions, 
such as the spread of narcotic plant species, 
that deserve our consideration and attention.

Discussion
Aerobiology. One of the most common plant-
induced health effects is related to aerobiology. 
Plant-based respiratory allergies are experi-
enced by approximately 30 million people 
within the United States (Gergen et al. 1987). 
Symptoms include sneezing, inflammation 
of nasal and conjunctival membranes, and 
wheezing. Complicating factors, including 

nasal polyps or secondary infections of the 
ears, nose, and throat, may also occur. Severe 
complications include asthma, cardiac dis-
tress, chronic obstructive pulmonary disease, 
and anaphylaxis.

Quantity and seasonality of pollen are 
likely to be affected by both climate forcing 
of phenology and direct effects on pollen pro-
duction. Overall, three distinct plant-based 
inputs relate to pollen production: trees in 
the spring, grasses in the summer, and rag-
weed (Ambrosia spp.) in the fall. In Europe, 
a 35-year record for birch (Betula spp.), a 
known source of allergenic tree pollen, indi-
cates earlier spring floral initiation and pol-
len release with anthropogenic warming 
(Emberlin et al. 2002). At present, the role 
of seasonality and/or rising CO2 on pollen 
production in grasses remains unknown. 
Warming has been shown to increase pollen 
production of western ragweed by 84% (Wan 
et al. 2002). Initial indoor studies examin-
ing the response of ragweed to recent and 
projected changes in CO2 demonstrated an 
increase in both ragweed growth and pollen 
production (Rogers et al. 2006; Wayne et al. 
2002; Ziska and Caulfield 2000); increased 
CO2 stimulates ragweed pollen production 
several times more than it stimulates over-
all growth, and the pollen produced may be 
more allergenic (Singer et al. 2005). Outdoor 
experiments that exploited an urban–rural 
transect also showed the sensitivity of rag-
weed pollen production to CO2 in situ (Ziska 
et  al. 2003). In addition, recent research 
on loblolly pine (Pinus taeda) at the Duke 
University Forest Free-Air CO2 Enrichment 
(FACE) site demonstrated that elevated 
CO2 concentrations (200 µmol/mol above 
ambient) resulted in early pollen production 
from younger trees and greater seasonal pol-
len production (LaDeau and Clark 2006). 
Besides increased pollen exposure, other con-
sequences of increased fossil fuel burning may 
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be synergistic; for example, diesel particles 
help deliver aeroallergens deep into airways 
and irritate immune cells, whereas early arrival 
of spring and late arrival of fall may extend 
tree and ragweed allergy seasons, respectively 
(Ziska et al. 2008a).

Alternatively, more subtle interactions 
regarding plants may be related to indirect 
effects of CO2 on fungal decomposition. 
For example, increasing CO2 concentration 
resulted in a 4-fold increase in airborne fun-
gal propagules, mostly spores (Klironomos 
et al. 1997). The link between spore forma-
tion, potential changes in allergenicity of the 
spores, and the mechanism associated with 
spore release in the context of elevated CO2 
has not been entirely elucidated; however, 
direct effects on microbial function and litter 
decay seem a likely possibility.

These data suggest a distinct role regard-
ing climate forcing and rising CO2 (both at 
the local urban level, and projected globally) 
on pollen/spore exposure among the general 
population. Although the epidemiology of 
allergic rhinitis is complex, depending on 
both economic and sociologic factors, the 
current data also indicate a well-defined role 
of plant biology in the spread of asthma and 
respiratory disease. Such associations may 
help explain the quadrupling of asthma in the 
United States since 1980 (American Academy 
of Allergy Asthma and Immunology 2000).

Contact dermatitis. More than 100 differ-
ent plant species are associated with contact 
dermatitis, an immune-mediated skin inflam-
mation. Chemical irritants can be present 
on all plant parts, including leaves, flowers, 
and roots, or can appear on the plant surface 
when injury occurs. One well-known chemi-
cal is urushiol, a mixture of catechol deriv-
atives. This is the compound that induces 
contact dermatitis in the poison ivy group 
(Toxicodendron/Rhus spp.). Currently, sen-
sitivity to urushiol occurs in about two of 
every three people, and amounts as small as 

1 ng are sufficient to induce a rash. More 
than 300,000 people yearly in the United 
States suffer from contact with members of 
the poison ivy group (e.g., poison ivy, oak, or 
sumac) (Mohan et al. 2006). The amount and 
concentration of these chemicals vary with a 
range of factors, including maturity, weather, 
soil, and ecotype. Recent research from the 
Duke FACE facility also indicated that poi-
son ivy growth and urushiol congeners are 
highly sensitive to rising CO2 (Mohan et al. 
2006). Overall, these data suggest plausible 
links among rising CO2, plant biology, and 
increased contact dermatitis. At present, 
potential interactions with warmer tempera-
tures and longer growing season in relation to 
biomass and urushiol content are unknown.

Toxicology. More than 700 plant species 
are poisonous to humans. Similar to der-
matitis, the presence of toxic substances is 
related to specific plant organs (fruit, leaf, 
stem), and edible and poisonous parts can 
exist on the same plant (e.g., rhubarb, Rheum 
rhabarbarum, and potato, Solanum tuberosa). 
Bracken fern (Pteridium aquilinum) may rep-
resent a toxicologic threat because of pro-
duction of potential carcinogenic spores or 
exudates (Trotter 1990). Poison hemlock 
(Conium maculatum), oleander (Nerium ale-
ander), and castor bean (Ricinus communis) 
are so poisonous that tiny amounts can be 
fatal if ingested (e.g., ricin in castor bean has 
a greater potency than cyanide). Ingestion of 
plant material continues to be a very common 
exposure for humans (particularly children) 
and can account for nearly 100,000 calls to 
national poison centers annually (Watson 
et  al. 2004). Pediatric patients comprise 
more than 80% of plant-related exposures. 
Only a few plants are associated with poten-
tially life-threatening toxicity, and < 20% of 
plant exposures require medical treatment 
(Watson et al. 2004). However, the impact of 
CO2 on the concentration or production of 
such poisons is almost completely unknown. 

Rising temperature and longer growing sea-
son would, a priori, increase the presence of 
such species in the environment, but, here 
too, little is known regarding the interaction 
between CO2 and toxicology.

Pharmacology. Plants have been used for 
healing since the beginning of civilization. 
Diversity in the production of secondary chem-
ical products remains an important source of 
existing and new metabolites of pharmacologic 
interest (Table 1). Even in developed countries, 
where synthetic drugs have replaced herbal 
medicines, 25% of all prescriptions dispensed 
from community pharmacies from 1959 
through 1980 contained plant extracts or active 
principles prepared from higher plants (e.g., 
codeine; Farnsworth et al. 1985). For devel-
oping countries, however, the World Health 
Organization (WHO) reported that > 3.5 bil-
lion people, or more than half of the world’s 
population, rely on plants as components of 
their primary health care (WHO 2002).

Less than 1% of terrestrial plant species 
have been examined in-depth for their possi-
ble pharmacologic use (Pitman and Jorgensen 
2002), and only a handful of studies have 
examined how pharmacologic compounds 
might respond to recent or projected changes 
in CO2 and/or temperature. Among these, 
growth of wooly foxglove (Digitalis lanata) and 
production of digoxin were increased at 1,000 
µmol/mol CO2 relative to ambient conditions 
(Stuhlfauth and Fock 1990). Production of 
morphine in wild poppy (Papaver setigerum) 
(Ziska et al. 2008b) (Figure 1) showed signifi-
cant increases with both recent and projected 
CO2 concentrations. Concurrent increases in 
growth temperature and CO2 also affected 
the production and concentration of atropine 
and scopolamine in jimson weed (Datura 
stromonium) (Ziska et al. 2005); however, a 
synergistic effect on either concentration or 
production was not observed.

Table 1. A partial list of plant-derived pharmaceutical drugs and their clinical uses. 

Drug	 Action/clinical use	 Plant species

Acetyldigoxin	 Cardiotonic	 Digitalis lanata (foxglove)
Allyl isothiocyanate	 Rubefaciant	 Brassica nigra (black mustard)
Artemisinin	 Antimalarial	 Artemisia annua (sweet Annie)
Atropine	 Anticholinergic	 Datura stramonium (jimsonweed)
Berberine	 Bacillary dysentery	 Berberis vulgaris (barberry)
Codeine	 Analgesic	 Papaver somniferum (poppy)
d-Pinitol	 Expectorant	 Various species
l-Dopa	 Anti-Parkinson	 Mucuna pruriens (velvet bean)
Ephedrine	 Antihistamine	 Ephedra sinica (Mormon tea)
Galanthamine	 Cholinesterase inhibitor	 Lycoris squamigera (surprise lily)
Kawain	 Tranquilizer	 Piper methysticum (kava)
Lapachol	 Anticancer, antitumor	 Tabebuia avellandedae (lapacho tree)
Ouabain	 Cardiotonic	 Strophanthus gratus (climbing oleander)
Quinine	 Antimalarial	 Cinchona ledgeriana (Peruvian bark)
Salicin	 Analgesic	 Salix alba (willow)
Taxol	 Antitumor	 Taxus brevifolia (Pacific yew)
Vasicine	 Cerebral stimulant	 Vinca minor (periwinkle)
Vincristine	 Antileukemic agent	 Catharanthus roseus (Madagascar periwinkle)

Figure 1. Changes in morphine production and con-
centration (mean ± SE) from wild poppy (Papaver 
setigerum) as a function of rising levels of atmo-
spheric CO2 (Ziska et al. 2008b), corresponding 
roughly to atmospheric concentrations from 1950, 
today, and those projected for the years 2050 and 
2090, respectively. Different letters indicate signifi-
cant differences as a function of CO2 concentration 
using Fisher’s protected least significant difference.
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Food security/nutrition. Adequate diet and 
nutrition remain key aspects of global health. 
Among climatic factors, two are likely to have 
severe consequences for agricultural productiv-
ity: water and temperature. Flowering is one of 
the most thermal-sensitive stages of plant growth 
(e.g., Boote et al. 2005). Chronic or short-
term exposure to higher temperatures during 
the reproductive stage of development can have 
negative affects on pollen viability, fertilization, 
and grain or fruit formation relative to vegeta-
tive growth (Hatfield 2008). In addition, water 
supply, particularly water for irrigation, is at risk 
with declining ice and snow reserves in moun-
tainous regions (e.g., Kerr 2007). Irrigation is 
vital to maintaining food security in populous 
regions in East Asia and elsewhere. Conversely, 
warmer temperatures and additional CO2 could 
extend growing seasons and boost produc-
tion; however, there is concern that concurrent 
increases in CO2 and temperature could further 
exacerbate reproductive sterility because of the 
indirect effect of CO2 on transpirational cooling 
at the canopy level (Horie et al. 2000; Prasad 
et al. 2006). With respect to nutrition, plants are 
anticipated to become more starchy but protein-
poor, with a subsequent decline in digestibility 
as CO2 increases (Hesman 2002). In paddy rice, 
percent protein decreased with both increasing 
air temperature and higher CO2 concentra-
tions over a 2-year period (Ziska et al. 1997). 
Increasing CO2 from preindustrial to current 
levels resulted in decreased protein in both 
spring and winter wheat (Rogers et al. 1998); 
other experiments have also shown a CO2-
induced reduction in flour protein concentra-
tion, as well as changes in optimum mixing 
time for bread dough, and bread loaf volume 
(Kimball et al. 2001). Alternatively, strawber-
ries have shown a positive increase in antioxi-
dant capacity and flavanoid content in response 
to elevated CO2 levels (Wang et al. 2003), and 
mung bean has shown an increase in omega-3 
fatty acid content (Ziska et al. 2007).

Spread of human disease. Plants are not 
disease vectors per se, but animal reservoirs of 
disease spread, notably rodents and mosqui-
toes, rely on plants as a principle food source 
(although female mosquitoes require blood 
proteins in order to lay eggs). Given that plant 
growth, pollen, and seed production among 
annual plants (including weeds) are likely to 
increase in response to CO2 (Patterson 1995) 
and warmer temperatures (Wan et al. 2002), 
greater availability of food supply could result 
in a higher abundance of these animal vectors, 
with consequences for disease epidemiology. 
Pollen on open ponds, for example, can serve 
as food for mosquito larvae (Ye-Ebiyo et al. 
2000); however, it is unclear if CO2-induced 
qualitative changes in pollen (Singer et al. 
2005) could also affect mosquito fecundity.

Pesticide, herbicide, and fungicide use. 
Chemical control is the principal means of 

weed management in most developed coun-
tries. Therefore, it is reasonable to ask whether 
current control efforts could limit any poten-
tial or probable impact of climatic forcing or 
CO2-induced changes in plant biology and 
public health. Temperature and precipita-
tion are known abiotic factors that can affect 
chemical application rates and overall efficacy 
(Patterson 1995). There is also evidence from a 
limited number of studies that rising CO2 lev-
els can decrease chemical efficacy for the con-
trol of annual and perennial weeds (Figure 2) 
(Archambault 2007; Ziska and Runion 2007). 
For Canada thistle, CO2-induced reductions 
in efficacy of glyphosate application were 
related to greater carbon allocation to roots 
and a reduction in the systemic effect of the 
herbicide (Ziska et al. 2004). However, it is 
not clear if this is a ubiquitous response among 
perennial weeds. Overall, pests, pathogens, 
and weeds currently consume some 42% of 
growing and stored crops annually (Pimentel 
1997), and this figure could escalate as a result 
of higher CO2, warming, altered precipita-
tion patterns, and more weather extremes. 
Increased use of petrochemicals for control 
carries further risks for human and animal 
health because it could increase the presence of 
these chemicals in the environment.

Uncertainties and limitations. As atmo-
spheric CO2 continues to increase, we can 
expect fundamental changes in plant biology 
and plant communities, either from antici-
pated changes in temperature and other abi-
otic parameters related to climatic forcing, 
or directly from CO2-induced changes in 
physiology and growth. From the initial stud-
ies described here, it is evident that there are 
a number of plant-based links between such 
anthropogenic perturbations and public health. 

Yet, there are a number of key questions that 
remain to be addressed by the scientific com-
munity. What other plant species are likely to 
increase pollen production in response to CO2/
temperature increases? How will this affect the 
epidemiology of allergies/asthma? Will contact 
dermatitis increase for the general population? 
Can we expect toxicologic changes in poisonous 
plants? How will CO2-induced changes in food 
quality affect human nutrition and health? Is 
the quality or efficacy of plant-based medicines 
increasing or decreasing? How might CO2 and/
or climate alter the spread and production of 
narcotic plants? As plant distribution changes 
with CO2/climate change, how will this affect 
the ability of mosquitoes or rodents to spread 
disease? If weed growth is responsive to increas-
ing CO2 and increased levels of herbicides are 
needed for control, how will this affect levels of 
pesticides in the environment? What steps must 
we take to ensure food security and adequate 
nutrition? None of these questions have been 
addressed in depth; few field data are available 
that assess both CO2 and temperature concur-
rently with respect to these questions.

Conclusions
There is a concerted effort among academic 
and government institutions both to recog-
nize the degree of health risk posed by climate 
change and to formulate strategies to mini-
mize adverse impacts (for reviews, see Burns 
2002; Epstein and Mills 2005; McMichael 
et al. 2006; Patz and Kovats 2002). However, 
in these assessments, the role of plant biology 
in human health has been largely ignored.

We suffer in many ways by what can be 
called “plant blindness.” That is, when we 
look at nature, we are more likely to recognize 
the diversity of animals and only acknowledge 

Figure 2. Change in growth rate (g dry matter/day) for weedy species after application of herbicide at 
recommended doses, when grown at current CO2 levels (A) and at elevated (600–800 µmol/mol) CO2 levels 
(B). At elevated CO2 levels (B), all growth rates were significantly greater relative to plants that received 
the same dosage grown at ambient (370–400 µmol/mol) CO2 levels (A). Herbicide was glyphosate in all 
cases except where indicated. Increased spraying frequency could overcome CO2-induced reductions in 
efficacy but could increase residual effects within the environment. 
a Glufosinate was active ingredient.
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plants as a sort of “green background.” Yet, 
that green background—essential habitat—is 
highly dynamic. It affects every aspect of our 
lives, from air, water, clothing to shelter and 
medicine. The ongoing increase in CO2 and 
its projected impact on temperature and cli-
mate represent a clarion call to consider plant 
interactions beyond the realm of agriculture. 
Assessing the scale and potential impact of 
these interactions between plant biology and 
public health is a facet of human-induced cli-
matic forcing that is underappreciated.
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